Data Assimilation Background

Elias D. Nino-Ruiz, Ph.D.
Universidad del Norte
enino@uninorte.edu.co

February 2, 2022

Outline

(1) Vector and Matrices
(2) Norms
(3) Subspaces
4. Eigenvalues, Eigenvectors and the Singular Value Decomposition
(5) Determinant and Trace

Vectors and Matrices I

- Vectors are always column vectors,

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \in \mathbb{R}^{n \times 1}
$$

x_{i} denotes the i-th element of \mathbf{x}.

- The transpose of a vector reads,

$$
\mathbf{x}^{T}=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right] \in \mathbb{R}^{1 \times n} .
$$

Vectors and Matrices II

- The inner product of two vectors $\mathbf{x} \in \mathbb{R}^{n \times 1}$ and $\mathbf{y} \in \mathbb{R}^{n \times 1}$ reads,

$$
\mathbf{x}^{T} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} \cdot y_{i} \in \mathbb{R}
$$

where y_{i} is the i-th component of vector \mathbf{y}.

- The outer product of two vectors $\mathbf{x} \in \mathbb{R}^{n \times 1}$ and $\mathbf{z} \in \mathbb{R}^{m \times 1}$ is given by,

$$
\mathbf{x} \cdot \mathbf{z}^{T}=\left[\begin{array}{cccc}
x_{1} \cdot z_{1} & x_{1} \cdot z_{2} & \ldots & x_{1} \cdot z_{m} \\
x_{2} \cdot z_{1} & x_{2} \cdot z_{2} & \ldots & x_{2} \cdot z_{m} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n} \cdot z_{1} & x_{n} \cdot z_{2} & \ldots & x_{n} \cdot z_{m}
\end{array}\right] \in \mathbb{R}^{n \times m}
$$

where z_{i} is the i-th element of vector \mathbf{z}.

Vectors and Matrices III

- Square matrices are of the form,

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

- General matrices are of the form,

$$
\mathbf{B}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

The components of \mathbf{A} can be referenced as $\{\mathbf{A}\}_{i, j}$, for $1 \leq i \leq m$ and $1 \leq j \leq n$.

Vectors and Matrices IV

- The transpose of a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$,

$$
\mathbf{B}^{T}=\left\{\mathbf{B}^{T}\right\}_{i, j}=\{\mathbf{B}\}_{j, i} \in \mathbb{R}^{n \times m}
$$

- The matrix \mathbf{B} is said to be square if $m=n$.
- A square is positive definite if there is a positive scalar α such that,

$$
\mathbf{x}^{T} \cdot \mathbf{A} \cdot \mathbf{x} \geq \alpha \cdot \mathbf{x}^{T} \cdot \mathbf{x}, \text { for all } \mathbf{x} \in \mathbb{R}^{n \times 1}
$$

or

$$
\mathbf{x}^{T} \cdot \mathbf{A} \cdot \mathbf{x}>0, \text { for all } \mathbf{x} \in \mathbb{R}^{n \times 1}, \text { except } \mathbf{x}=\mathbf{0}
$$

- A square is positive semidefinite if

$$
\mathbf{x}^{T} \cdot \mathbf{A} \cdot \mathbf{x} \geq 0, \text { for some } \mathbf{x} \in \mathbb{R}^{n \times 1}, \text { except } \mathbf{x}=\mathbf{0}
$$

Vectors and Matrices V

- The diagonal of the matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ consists of elements $\{A\}_{i, i}$, $1 \leq i \leq \min (n, m)$.
- The matrix \mathbf{A} is lower triangular if $\{\mathbf{A}\}_{i, j}=0$ whenever $i<j$.
- The matrix \mathbf{A} is upper triangular if $\{\mathbf{A}\}_{i, j}=0$ whenever $i>j$.
- A square matrix is non-singular if for any vector $\mathbf{b} \in \mathbb{R}^{n \times 1}$, there exists $\mathbf{x} \in \mathbb{R}^{n \times 1}$ such that,

$$
\mathbf{A} \cdot \mathbf{x}=\mathbf{b}
$$

- The identity matrix, denoted by \mathbf{I}, is the square diagonal matrix whose diagonal elements are all 1 .
- For non-singular matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$, there is a unique $n \times n$ matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ such that,

$$
\mathbf{A} \cdot \mathbf{C}=\mathbf{C} \cdot \mathbf{A}=\mathbf{I},
$$

we denote $\mathbf{C}=\mathbf{A}^{-1}$ and call it the inverse of \mathbf{A}.

Vectors and Matrices VI

- A square matrix \mathbf{Q} is orthogonal if

$$
\mathbf{Q}^{T} \cdot \mathbf{Q}=\mathbf{Q} \cdot \mathbf{Q}^{T}=\mathbf{I}
$$

Norms I

- For a vector $\mathbf{x} \in \mathbb{R}^{n \times 1}$, we define the following norms,

$$
\begin{aligned}
\|\mathbf{x}\|_{1} & =\sum_{i=1}^{n}\left|x_{i}\right| \\
\|\mathbf{x}\|_{2} & =\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2} \\
\|\mathbf{x}\|_{\infty} & =\max _{1 \leq i \leq n}\left|x_{i}\right|
\end{aligned}
$$

All these norms measure the length pf the vector in some sense, and they are equivalent in the sense that each one is bounded above and below by a multiple of the other, for instance,

$$
\|\mathbf{x}\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n} \cdot\|\mathbf{x}\|_{\infty},\|\mathbf{x}\|_{\infty} \leq\|x\|_{1} \leq n \cdot\|\mathbf{x}\|_{\infty}
$$

Norms II

- Some properties,

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{z}\| & \leq\|\mathbf{x}\|+\|z\| \\
\|\mathbf{x}\| & =0 \Rightarrow \mathbf{x}=\mathbf{0} \\
\|\alpha \cdot \mathbf{x}\| & =|\alpha| \cdot\|\mathbf{x}\|
\end{aligned}
$$

- Another interesting property that holds for $\|.\|_{2}$ is the Cauchy-Schwarz inequality,

$$
\left|\mathbf{x}^{T} \cdot \mathbf{y}\right| \leq\|\mathbf{x}\| \cdot\|\mathbf{y}\|
$$

Norms III

- For a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, matrix norms are defined as follows,

$$
\begin{aligned}
\|\mathbf{A}\|_{1} & =\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right| \\
\|\mathbf{A}\|_{2} & =\sigma_{\max }\left(\mathbf{A}^{T} \cdot \mathbf{A}\right)^{1 / 2} \\
\|\mathbf{A}\|_{\infty} & =\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right|
\end{aligned}
$$

- For the Euclidean norm $\|.\|_{2}$, the following property holds,

$$
\|\mathbf{A} \cdot \mathbf{B}\| \leq\|\mathbf{A}\| \cdot\|\mathbf{B}\|
$$

for all matrices \mathbf{A} and \mathbf{B} with consistent dimensions.

Norms IV

- The condition number of a non-singular matrix is defined as

$$
\kappa(\mathbf{A})=\|\mathbf{A}\| \cdot\left\|\mathbf{A}^{-1}\right\|
$$

- The Frobenius norm $\|\mathbf{A}\|_{F}$ of the matrix \mathbf{A} is defined as follows,

$$
\|\mathbf{A}\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}\right)^{1 / 2}
$$

Subspaces

- Given the Euclidean space \mathbb{R}^{n}, the subset $\mathcal{S} \subset \mathbb{R}^{n}$ is a sub-space of \mathbb{R}^{n} is the following property holds,

$$
\alpha \cdot x+\beta \cdot y \in \mathcal{S}, \text { for all } \alpha, \beta \in \mathbb{R}
$$

- A set of vectors

$$
\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right\} \in \mathbb{R}^{n \times 1}
$$

is called linearly independent set if there are no real numbers $\left\{\alpha_{i}\right\}_{i=1}^{m}$ such that,

$$
\sum_{i=1}^{m} \alpha_{i} \cdot \mathbf{x}_{i}=\mathbf{0}
$$

unless we make the trivial choice $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{m}=0$.

- Spanning set,

$$
\mathbf{x}=\sum_{i=1}^{m} \alpha_{i} \cdot \mathbf{x}_{i}, \text { for } \mathbf{x} \in \mathcal{S}
$$

Eigenvalues, Eigenvectors and the Singular Value Decomposition I

- A scalar value λ is an eigenvalue of the $n \times n$ matrix \mathbf{A} if there is a nonzero vector $\mathbf{q} \in \mathbb{R}^{n \times 1}$,

$$
\mathbf{A} \cdot \mathbf{q}=\lambda \cdot \mathbf{q}
$$

the matrix \mathbf{A} is nonsingular if none of its eigenvalues are zero.

- The eigen values of symmetric matrices are all real numbers, while nonsymmetric matrices may have imaginary eigenvalues.

Eigenvalues, Eigenvectors and the Singular Value Decomposition II

- All matrices \mathbf{A} (not necessarily square) can be decomposed as a product of three matrices with special properties. When $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m>n$, its Singular Value Decomposition has the form,

$$
\mathbf{A}=\mathbf{U} \cdot\left[\begin{array}{l}
\mathbf{S} \\
\mathbf{0}
\end{array}\right] \cdot \mathbf{V}^{T}
$$

where $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are orthogonal matrices, and $\mathbf{S} \in \mathbb{R}^{n \times n}$ is a diagonal matrix whose diagonal elements are the singular values of \mathbf{A} in descending order,

$$
\begin{equation*}
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n} \tag{1}
\end{equation*}
$$

Eigenvalues, Eigenvectors and the Singular Value Decomposition III

- For $n \geq m$

$$
\mathbf{A}=\mathbf{U} \cdot\left[\begin{array}{ll}
\mathbf{S} & \mathbf{0}
\end{array}\right] \cdot \mathbf{V}^{T},
$$

where $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are orthogonal matrices, and $\mathbf{S} \in \mathbb{R}^{m \times m}$ is a diagonal matrix whose diagonal elements are the singular values of \mathbf{A} in descending order,

$$
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{m}
$$

Eigenvalues, Eigenvectors and the Singular Value Decomposition IV

- Spectral decomposition of $\mathbf{A} \in \mathbb{R}^{n \times n}$

$$
\mathbf{A}=\sum_{i=1}^{n} \sigma_{i} \cdot \mathbf{u}_{i} \cdot \mathbf{v}_{i}^{T}
$$

where

$$
\begin{aligned}
\mathbf{S} & =\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\} \in \mathbb{R}^{n \times n} \\
\mathbf{U} & =\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right] \in \mathbb{R}^{n \times n} \\
\mathbf{V} & =\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right] \in \mathbb{R}^{n \times n}
\end{aligned}
$$

from which, functional over matrices are defined,

$$
f(\mathbf{A})=\sum_{i=1}^{n} f\left(\sigma_{i}\right) \cdot \mathbf{u}_{i} \cdot \mathbf{v}_{i}^{T}
$$

Eigenvalues, Eigenvectors and the Singular Value Decomposition V

- When $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric,

$$
\begin{equation*}
\mathbf{A}=\sum_{i=1}^{n} \sigma_{i} \cdot \mathbf{u}_{i} \cdot \mathbf{v}_{i}^{T}=\sum_{i=1}^{n} \sigma_{i} \cdot \mathbf{u}_{i} \cdot \mathbf{u}_{i}^{T}=\mathbf{U} \cdot \mathbf{S} \cdot \mathbf{U}^{T} . \tag{2}
\end{equation*}
$$

Determinant and Trace I

- The trace of $\mathbf{A} \in \mathbb{R}^{n \times n}$ is defined by,

$$
\operatorname{trace}(\mathbf{A})=\sum_{i=1}^{n}\{\mathbf{A}\}_{i, i}
$$

you can show that,

$$
\operatorname{trace}(\mathbf{A})=\sum_{i=1}^{n} \sigma_{i}
$$

where σ_{i} denotes the i-th singular value of \mathbf{A}.

- The determinant of $\mathbf{A} \in \mathbb{R}^{n \times n}$ reads,

$$
\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \sigma_{i}
$$

where σ_{i} denotes the i-th singular value of \mathbf{A}.

Determinant and Trace II

- The determinant has several revealing properties,
(1) $\operatorname{det}(\mathbf{A})=0$ if and only if \mathbf{A} is singular.
(2) $\operatorname{det}(\mathbf{A}) \cdot \operatorname{det}(\mathbf{B})=\operatorname{det}(\mathbf{A} \cdot \mathbf{B})$.
(3) $\operatorname{det}\left(\mathbf{A}^{-1}\right)=1 / \operatorname{det}(\mathbf{A})$.
- Please recall,
(1) Gaussian elimination.
(2) LU factorization.
(3) Cholesky factorization.

