For a complete list, please visit my ORCID , Google Scholar, and SCOPUS profiles.
Popov, AA, Sandu, A, Nino Ruiz, ED
and Evensen, G. 2023. A Stochastic Covariance Shrinkage Approach in Ensemble Transform Kalman Filtering. Tellus A: Dynamic Meteorology and Oceanography, 75(1): 159–171. DOI: https://doi.org/10.16993/tellusa.214
Nino-Ruiz, E.D.
, & Consuegra Ortega (2023) AMLCS-DA: A data assimilation package in Python for Atmospheric General Circulation Models. SoftwareX, Elsevier, 1– 10. Available from: https://doi.org/10.1016/j.softx.2023.101374
Nino-Ruiz, E.D.
, Consuegra Ortega, R.S. & Lucini, M.(2023) Ensemble based methods for leapfrog integration in the simplified parameterizations, primitive-equation dynamics model. Quarterly Journal of the Royal Meteorological Society, RMetS, 1– 15. Available from: https://doi.org/10.1002/qj.4424
Nino-Ruiz, E. D.
, Guzman, L., & Jabba, D. (2022). Ensemble Driven Shrinkage Covariance Matrix Estimation for Sequential Data Assimilation. International Journal of Artificial Intelligence, CESER Publications, 2022 Autumn (October), Volume 20, Number 2.Nino-Ruiz, E. D.
(2021). A line-search optimization method for non-Gaussian data assimilation via random quasi-orthogonal sub-spaces. Journal of Computational Science, Elsevier, 53, 101373.yNino-Ruiz, E. D.
, Guzman-Reyes, L. G., Yarce, A., Pinel, N., & Heemink, A. W. (2021). An efficient ensemble Kalman Filter implementation via shrinkage covariance matrix estimation: exploiting prior knowledge. Computational Geosciences, Springer, 25(3), 985-1003.Nino-Ruiz, E. D.
(2021). A data-driven localization method for ensemble based data assimilation. Journal of Computational Science, Elsevier, 51, 101328.Nino-Ruiz, E. D.
, Guzman, L., & Jabba, D. (2021). An ensemble kalman filter implementation based on the ledoit and wolf covariance matrix estimator. Journal of Computational and Applied Mathematics, Elsevier, 384, 113163.Niño-Ruiz, E. D.
, & Pinel, N. (2020). On the mathematical modelling and data assimilation for air pollution assessment in the Tropical Andes. Environmental Science and Pollution Research, Springer, 27(29), 35993-36012.Nino-Ruiz, E. D.
(2020). A numerical method for solving linear systems in the preconditioned Crank–Nicolson algorithm. Applied Mathematics Letters, Elsevier, 104, 106254.Nino, E. D.
, & Arteta, C. A. (2019). Dynamic Site Response Characterization Via Bayesian Inference: Analysis of the SGC Station Deposit in Bogota, Colombia. Journal of Earthquake Engineering, Taylor & Francis, 23(10), 1629-1650.Nino-Ruiz
, E. D., & Yang, X. S. (2019). Improved Tabu Search and Simulated Annealing methods for nonlinear data assimilation. Applied Soft Computing, Elsevier, 83, 105624.Nino-Ruiz, E. D.
(2019). Non-linear data assimilation via trust region optimization. Computational and Applied Mathematics, Springer, 38(3), 1-26.Nino-Ruiz, E. D.
, Sandu, A., & Deng, X. (2019). A parallel implementation of the ensemble Kalman filter based on modified Cholesky decomposition. Journal of Computational Science, Elsevier, 36, 100654.Nino-Ruiz, E. D.
, & Morales-Retat, L. E. (2019). A Tabu Search implementation for adaptive localization in ensemble-based methods. Soft Computing, Springer, 23(14), 5519-5535.Nino-Ruiz, E. D.
, Ardila, C., Estrada, J., & Capacho, J. (2019). A reduced-space line-search method for unconstrained optimization via random descent directions. Applied Mathematics and Computation, Elsevier 341, 15-30.Nino-Ruiz, E. D.
, & Sandu, A. (2019). Efficient parallel implementation of DDDAS inference using an ensemble Kalman filter with shrinkage covariance matrix estimation. Cluster Computing, Springer, 22(1), 2211-2221.Nino-Ruiz, E. D.
, Ardila, C., & Capacho, R. (2018). Local search methods for the solution of implicit inverse problems. Soft Computing, 22(14), 4819-4832.Nino-Ruiz, E. D.
(2018). Implicit surrogate models for trust region based methods. Journal of computational science, Elsevier, 26, 264-274.Nino-Ruiz, E. D.
(2017). Robust Data Assimilation Using L_1 and Huber Norms. SIAM Journal on Scientific Computing, SIAM, 39(3), B548-B570.Nino-Ruiz, E. D.
, & Anitescu, M. (2016). A high-performance computing framework for analyzing the economic impacts of wind correlation. Electric Power Systems Research, Elsevier, 141, 372-380.Ruiz, E. D. N.
, & Sandu, A. (2016). A derivative-free trust region framework for variational data assimilation. Journal of Computational and Applied Mathematics, Elsevier, 293, 164-179.Nino-Ruiz, E. D.
, & Sandu, A. (2015). Ensemble Kalman filter implementations based on shrinkage covariance matrix estimation. Ocean Dynamics, Springer, 65(11), 1423-1439.Nino Ruiz, E. D.
, Sandu, A., & Anderson, J. (2015). An efficient implementation of the ensemble Kalman filter based on an iterative Sherman–Morrison formula. Statistics and Computing, Springer, 25(3), 561-577.